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Abstract The energy E(G) of a graph G, a quantity closely related to total π -electron
energy, is equal to the sum of absolute values of the eigenvalues of G. Two graphs Ga

and Gb are said to be equienergetic if E(Ga) = E(Gb). In 2009 it was discovered
that there are pairs of graphs for which the difference E(Ga) − E(Gb) is non-zero,
but very small. Such pairs of graphs were referred to as almost equienergetic, but a
precise criterion for almost–equienergeticity was not given. We now fill this gap.
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1 Introduction

The total π -electron energy (Eπ ), as calculated within the simple tight–binding
approximation, is one of the most precious pieces of information that can be obtained
from the spectrum of the molecular graph [1–4]. In the case of the most interest-
ing conjugated π -electron systems (in particular, benzenoids and fullerenes), Eπ is
quantitatively related with the experimentally determined heats of formation and other
measures of thermodynamic stability [3,5–8].
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Fig. 1 Two almost–equienergetic trees: E(T1) = 18.090756640280765 . . . , E(T2) = 18.0907-
56641775140 . . .

The graph–spectral expression for total π -electron energy was the motivation for
the introduction of the concept of graph energy, defined as

E = E(G) =
n∑

i=1

|λi |

where G is a general graph of order n, whose eigenvalues (i.e., the eigenvalues of
its (0,1)-adjacency matrix) are λ1, λ2, . . . , λn . For the vast majority of chemically
relevant graphs (but not always [9]), E and Eπ coincide. In the last 10–15 years, graph
energy became a popular topic of mathematical research, resulting in hundreds of
published papers. For details on graph energy, see the book [10] and the references
cited therein. Some of the results thus obtained have direct chemical applicability.

A noteworthy discovery made in the theory of graph energy was that there are non-
isomorphic and non-cospectral graphs with equal E-values. This was done practically
simultaneously in 2004 by Balakrishnan [11] and Brankov et al. [12]. Such pairs of
graphs are referred to as equienergetic. Eventually, numerous pairs, triplets, and larger
families of equienergetic graphs were discovered and/or constructed [10].

Within a computer–aided search for equienergetic trees [13], it was noticed that
there exist pairs of trees Ta, Tb , for which the difference E(Ta) − E(Tb) is non-zero,
but remarkably small. An example of this kind is displayed in Fig. 1.

Pairs of graphs with such property were named almost–equienergetic [13]. How-
ever, a rigorous definition of almost–equienergeticity has not be given. In [13] we
read:

…We tentatively and to a great degree arbitrarily call two graphs Ga and Gb

almost–equienergetic if 0 < |E(Ga) − E(Gb)| < 10−8.

We now offer an analysis, leading to a more rational and theoretically better founded
criterion for almost–equienergeticity.

2 Preparatory considerations

Throughout this paper we restrict our considerations to bipartite graphs. By this, the
generality of the approach will be only slightly diminished, whereas the mathematical
formalism will be significantly simplified.

The characteristic polynomial of a bipartite graph G with n vertices is of the form
[14]
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φ(G, λ) =
�n/2�∑

k=0

(−1)k b(G, k) λn−2k (1)

where b(G, 0) = 1 and b(G, k) ≥ 0 for all k , 1 ≤ k ≤ �n/2�.
Let thus Ga and Gb be two bipartite graphs, both possessing n vertices. Without

loss of generality, in what follows we assume that n is even. According to a classical
result by Coulson and Jacobs [15],

E(Ga) − E(Gb) = 2

π

+∞∫

0

ln
φ(Ga, i x)

φ(Gb, i x)
dx

where i = √−1. In view of Eq. (1),

E(Ga) − E(Gb) = 2

π

+∞∫

0

ln

∑
k≥0

b(Ga, k) xn−2k

∑
k≥0

b(Gb, k) xn−2k
dx . (2)

Bearing in mind Eq. (2), we will focus our attention to the integral

J =
+∞∫

0

ln
P(x)

Q(x)
dx (3)

where P(x) and Q(x) are polynomials:

P(x) = xn + a2 xn−2 + a4 xn−4 + . . . + an

Q(x) = xn + b2 xn−2 + b4 xn−4 + . . . + bn

with conveniently chosen coefficients (see below), and examine what is the smallest
possible non-zero value of |J|.

3 Main result

Let n be an even positive integer, and

P(x) =
n/2∑

k=0

a2k xn−2k ; a0 = 1

Q(x) =
n/2∑

k=0

b2k xn−2k ; b0 = 1

be polynomials whose coefficients are non-negative integers. Let the integral J be
given by Eq. (3).
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In an earlier work [16], we have shown that by choosing the coefficients of P(x)

and Q(x) sufficiently large, the integral J achieves arbitrarily small positive values.
This property of J is independent of the actual value of n.

On the other hand, if the polynomials P(x) and Q(x) pertain to the characteristic
polynomials of n-vertex (bipartite) graphs, then their coefficients cannot be bound-
lessly large. It is easy to recognize that in the case of acyclic graphs (including

trees), the greatest possible value of these coefficients is

(
n/2
k

)
, achieved in the

case of the graph consisting of n/2 isolated edges. We shall therefore require that

a2k, b2k ≤
(

n/2
k

)
, k = 1, 2, . . . , n/2.

It is obvious that J = 0 if a2k = b2k holds for all k = 1, 2, . . . , n/2. If, however,
a2k ≥ b2k holds for all k = 1, 2, . . . , n/2, and at least one of these inequalities is
strict, then J > 0. We are interested to find out, how small J could be in such a case.

Let, therefore, the polynomials P(x) and Q(x) be chosen so that a2k = b2k for all
k �= (n − k0)/2 and bn−k0 = an−k0 − 1, that is

Q(x) = P(x) − xk0 . (4)

Then

J =
+∞∫

0

ln

[
1 + xk0

Q(x)

]
dx

≥
+∞∫

0

ln

⎡

⎢⎢⎢⎣1 + xk0

n/2∑
k=0

(
n/2
k

)
xn−2k

⎤

⎥⎥⎥⎦ dx =
+∞∫

0

ln

[
1 + xk0

(x2 + 1)n/2

]
dx

=
1∫

0

ln

[
1 + xk0

(x2 + 1)n/2

]
dx +

+∞∫

1

ln

[
1 + xk0

(x2 + 1)n/2

]
dx

≥
1∫

0

ln

[
1 + xk0

2n/2

]
dx +

+∞∫

1

ln

[
1 + xk0

(2x2)n/2

]
dx .

Denote the integrals
∫ 1

0 ln
(

1 + xk0

2n/2

)
dx and

∫ +∞
1 ln

(
1 + xk0

(2x2)n/2

)
dx by J1(n, k0)

and J2(n, k0), respectively, and let

Ĵ(n, k0) = J1(n, k0) + J2(n, k0).

It is clear that J ≥ Ĵ(n, k0).
Consider first the integral J1(n, k0). For k0 = 0, we simply have

J1(n, 0) = ln

(
1 + 1

2n/2

)
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whereas for k0 > 0, by performing integration by parts and taking into account the
identity [17]

u∫

0

xμ−1

1 + β x
dx = uμ

μ
2 F1(1 , μ ; 1 + μ ; −uβ)

we obtain

J1(n, k0) = ln

(
1 + 1

2n/2

)
− k0

[
1 − 2 F1

(
1 ,

1

k0
; 1 + 1

k0
; − 1

2n/2

)]
.

In the above expressions, 2 F1(a , b ; c ; z) is the Gaussian hypergeometric function
defined via

2 F1(a , b ; c ; z) =
+∞∑

k=0

(a)k (b)k

(c)k

zk

k!

where

(q)k =
{

1 for k = 0
q(q + 1) . . . (q + k − 1) for k > 0.

Consider now the integral J2(n, k0) , which can be written as

J2(n, k0) =
+∞∫

1

ln

(
1 + 1

2n/2 xn−k0

)
dx .

By applying integration by parts we get

J2(n, k0) = x ln

(
1 + 1

2n/2 xn−k0

) ∣∣∣∣
+∞

1

+
+∞∫

1

n − k0

1 + 2n/2 xn−k0
dx .

Since n − k0 ≥ 2, by application of l’Hospital’s rule, we have

lim
x→+∞ x ln

(
1 + 1

2n/2 xn−k0

)
= lim

x→+∞
ln

(
1 + 1

2n/2 xn−k0

)

1
x

= lim
x→+∞

k0−n
x+2n/2 xn−k0+1

− 1
x2

= lim
x→+∞

n − k0
1
x + 2n/2 xn−k0−1

= 0
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and therefore

J2(n, k0) = − ln

(
1 + 1

2n/2

)
+

+∞∫

1

n − k0

1 + 2n/2 xn−k0
dx . (5)

In view of the identity [17]

+∞∫

u

xμ−1

(1 + β x)ν
dx = uμ−ν

(ν − μ)βν 2 F1

(
ν , ν − μ ; ν − μ + 1 ; − 1

uβ

)

the integral on the right–hand side of (5) is equal to

n − k0

2n/2 (n − k0 − 1)
2 F1

(
1 , 1 − 1

n − k0
; 2 − 1

n − k0
; − 1

2n/2

)

and therefore

J2(n, k0) = − ln

(
1 + 1

2n/2

)

+ n − k0

2n/2 (n − k0 − 1)
2 F1

(
1 , 1 − 1

n − k0
; 2 − 1

n − k0
; − 1

2n/2

)
.

For k0 = 0, this finally yields

Ĵ(n, 0) = n

2n/2 (n − 1)
2 F1

(
1 , 1 − 1

n
; 2 − 1

n
; − 1

2n/2

)
(6)

whereas for k0 > 0, we get

Ĵ(n, k0) = n − k0

2n/2 (n − k0 − 1)
2 F1

(
1 , 1 − 1

n − k0
; 2 − 1

n − k0
; − 1

2n/2

)

−k0

[
1 − 2 F1

(
1 ,

1

k0
; 1 + 1

k0
; − 1

2n/2

)]
.

In Fig. 2 is shown the dependence of the integral Ĵ(n, k0) on the variable k0 , k0 ∈
[0, n − 2], for a few selected values of n. The greatest value of Ĵ(n, k0) is always
achieved at k0 = n − 2, in which case

Ĵ(n, n − 2) = 21−n/4 arctan
(

2−n/4
)

−(n − 2)

[
1 − 2 F1

(
1 ,

1

n − 2
; 1 + 1

n − 2
; − 1

2n/2

)]
. (7)
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(a) (b)

(c) (d)

Fig. 2 The integrals Ĵ(n, k0) for k0 ∈ [0, n − 2], n = 12, 20, 32, 40

Table 1 The integral
Ĵ(n, n − 2) for n = 6, 8, . . . , 60

n Ĵ(n, n − 2) n Ĵ(n, n − 2)

6 1.47 × 10−1 8 7.06 × 10−2

10 3.45 × 10−2 12 1.70 × 10−2

14 8.40 × 10−3 16 4.16 × 10−3

18 2.07 × 10−3 20 1.03 × 10−3

22 5.11 × 10−4 24 2.55 × 10−4

26 1.27 × 10−4 28 6.33 × 10−5

30 3.16 × 10−5 32 1.58 × 10−5

34 7.86 × 10−6 36 3.92 × 10−6

38 1.96 × 10−6 40 9.78 × 10−7

42 4.88 × 10−7 44 2.44 × 10−7

46 1.22 × 10−7 48 6.09 × 10−8

50 3.04 × 10−8 52 1.52 × 10−8

54 7.59 × 10−9 56 3.79 × 10−9

58 1.90 × 10−9 60 9.47 × 10−10

Numerical values of Ĵ(n, n − 2) for the first few values of n are given in Table 1,
whereas the corresponding values of Ĵ(n, 0) are found in Table 2. It can be noticed
that the numerical values of these two integrals differ insignificantly. Therefore, since
the form of the expression (6) is somewhat simpler than that of (7), the former should
be preferred with regard to the definition of almost–equienergeticity.

123



220 J Math Chem (2014) 52:213–221

Table 2 The integral Ĵ(n, 0) for
n = 6, 8, . . . , 60

n Ĵ(n, 0) n Ĵ(n, 0)

6 1.42 × 10−1 8 6.94 × 10−2

10 3.42 × 10−2 12 1.69 × 10−2

14 8.38 × 10−3 16 4.16 × 10−3

18 2.07 × 10−3 20 1.03 × 10−3

22 5.11 × 10−4 24 2.55 × 10−4

26 1.27 × 10−4 28 6.33 × 10−5

30 3.16 × 10−5 32 1.58 × 10−5

34 7.86 × 10−6 36 3.92 × 10−6

38 1.96 × 10−6 40 9.78 × 10−7

42 4.88 × 10−7 44 2.44 × 10−7

46 1.22 × 10−7 48 6.09 × 10−8

50 3.04 × 10−8 52 1.52 × 10−8

54 7.59 × 10−9 56 3.79 × 10−9

58 1.90 × 10−9 60 9.47 × 10−10

4 Discussion

The integral 2
π

J, calculated according to the model (4), and its estimates 2
π

Ĵ, are
certainly not the smallest non-zero value that the energy difference of two graphs may
assume. Even smaller values of |E(Ga)− E(Gb)| must be encountered if some coeffi-
cients of Q(x) are set smaller and some other greater than the respective coefficients of
P(x). Therefore, 2

π
Ĵ(n, n−2) may be viewed as the greatest energy difference within

a setup that is far from both the best possible and the worst possible, but which—from
an algebraic point of view—is the simplest possible.

It is intuitively clear that whatever the criterion for almost–equienergeticity would
be, it should be a (moderately) decreasing function of the number n of vertices. As seen
from Tables 1 and 2, the behavior of Ĵ satisfies this requirement. In addition, the actual
numerical values of 2

π
Ĵ(n, n − 2) are in good agreement with the smallest observed

(non-zero) energy differences encountered in the earlier computer–aided study [13].
Therefore, we propose that two n-vertex graphs Ga and Gb be referred to as almost–

equienergetic if the condition

0 < |E(Ga) − E(Gb)| ≤ 2

π
Ĵ(n, n − 2)

is obeyed, which in practice is identical to the condition

0 < |E(Ga) − E(Gb)| ≤ 2

π
Ĵ(n, 0)

where Ĵ(n, n − 2) and Ĵ(n, 0) are given by Eqs. (7) and (6), respectively, and where
the needed numerical values can be taken from Tables 1 and 2.
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12. V. Brankov, D. Stevanović, I. Gutman, J. Serb. Chem. Soc. 69, 549 (2004)
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